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A fully conservative zonal interface algorithm has been developed
for ovedapped [Chimera) aiids. In this new approach, overlapped
zones are transformed inlo patched zones. Flux conservation is then
enforced on the patch boundary in a jocal sense, thus guaranteeing
global conservation. This algorithm also unifies the interface treat-
ment for patched and overlapped grids. The zona!l interface scheme
has been successfully implemented into a cell-centered finite vol-
urne code. Test cases indicated that the newly developed interface
scheme is indeed fully conservative, highly accurate, and possesses
superior convergence properties when compared to {he original
Chimera scheme. © 1995 Academie Press, inc.

1. INTRODUCTION

To handle complex geometries and Now physics in computa-
tional fluid dynamics (CFD) analysis, a multizonal approach is
highly favored over the single-zonal approach. In the multizonal
{multiblock) approach, the flow domain is divided into a number
of geometrically simple subdomains (zones) in which indepen-
dent meshes can be generated and different flow physics (gov-
erning equations) can be applied if necessary. The multizonal
approach also has the advantage that the mesh in a certain zone
of the fow domain can be casily refined o accurately resolve
complex flow features {shock waves, slip lines, vortices, etc.)
without maodifying the meshes in the neighboring zones. Fur-
thermore, multizonal algorithins can be casily adapted to take
wdvantage ol muliprocessor paralle] computers,

There are two different multizonal approaches depending on
whether zonal boundaries exactly match or arbitrarily intersect
cach other. The former is named Patched grid approach and
the latter the Overlapped (Chimera) grid approach, Both grid
topologies are shown in Fig. 1.

A systematic study on the celi-veriex based (finite difference)
patched grid approach was carried out by Rai |1, 2|, who
proposed a conservative zonal scheme and later extended it to
an implicit relaxation algorithm for Euler equations. Its exten-
sion 1o three-dimensional viscous flow and to cell-center based
finite volume schemes were reporied by Walters e all 13) and
Klopfer et al. [4]. The major drawback of the patched grid
scheme is the limitation of the exact maitch that it imposes on
zonal interfaces.

In addition to the patched grid approach, another strategy,
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namely overlapped grid based multizone approach, was under
development. The most extensive and noticeable work of over-
lapped grid is the so-called Chinera method developed by
Benek ef al. |5] and further extended by Steger et af. [6] and
Benek ef af. [7]. More recently. the Chimera grid scheme was
applied to complex three-dimensional unsteady problems such
as separation of the spacecraft orbiter from the boosters [8].
Since interpolations are used between grids 1o exchange infor-
mation in the Chimera grid scheme, the overlapped grid ap-
proach is intrinsically nonconservative and, thus, has had diffi-
culty and uncertainty in capturing shock waves. It was also
reported in [9] that the convergence rate of a stcady problem
might depend on the overlapped region, and in some cases
convergence could not be achieved, Although some improve-
ment on the conservation properties of the Chimera were pro-
posed by several researchers, e.g., Moon ef af. [10], the results
were not fully satisfactory. A conservative constraint was em-
ployed in {10} however, the condition used was not sufficient
to guarantee conservation,

Some advantages and disadvantages of the previous patched
and overlapped grid algorithms are summarized below

a. patched grid scheme
* {ully conservative

¢ interpolation from one zone to another zone is unneces-
sary (for cell-centered based (inite volume schemes). but

« zonal interfaces need perfect malch;

b. overlapped grid scheme

arbitrary boundary inlerface matches

grids can move relative to each other easily, but
= zonal boundary treatment is not fully conservalive

* two-way interpolations are required.
Y P q

Due 1o the nonlinear nature of Euler equations, care needs
to be taken when they are solved in a discretized manner. It is
well known that given a smooth initial condition, discontinuities
may develop in the solution due to the hyperbolic natore of
these equations. Capturing the discontinuities in the Euler solu-
tions was one of the challenges faced by applied mathematicians
during the early stages of CFD development. Lax ] estab-
lished several criteria which guarantee that the numerical solu-
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a b

Twao types of muitizonal grid approaches.

FIG. 1.

tion is indeed the physically relevant weak solution to the Eunler
equations in one of his most famous papers. These criteria
can be summarized as: conservation and the entropy condition
{besides consistency and stability). Since most numerical
schemes are dissipative, the entropy condition is usually satis-
fied. Therefore, the other criterion of the numerical scheme is
conservation. Fortunately, most CFD numerical algorithms
used today are conservative. However, the use of multizonal
grid approaches introduces artificial boundaries into the physi-
cal domain, i.e., zonal interfaces. It is important that these
interfaces are treated conservatively to guarantee global conser-
vation. Otherwise, although the numerical scheme is zonally
conservative it is nonconservative globally.

Because of the difficulty in treating' the interface of over-
lapped grids conservatively, nonconservative interpolations
were used in practice to exchange information between over-
lapped zones, The effects of this globally nonconservative
scheme to the ogverall solution accuracy have not been under-
stood. With a globally conservative numerical scheme, one
can be sure the physically relevant numerical solution will be
obtained (in the limit of global grid refinement). However, it
is uncertain that one will always obtain the correct physical
solation with a nonconservative numerical scheme. Until it is
proved otherwise, the uncertainty will always be there.

The current study addresses the very root of the problem—
conservative interface treatment for overlapped grids. The new
interface scheme will be shown to be fundamentally conserva-
tive. With a globally conservative numerical scheme, one can
apply Chimera to previously unexplored flow problems with
confidence.

2. CONDITIONS OF CONSERVATION

Consider the following conservation laws written in inte-
gral form:

fv%dv+9gsf’d$=0. (1)

The vectors Q and F are given by

( PW [ pvn )

pu puv, + pn,
Q=4PV} F=7{pvv,tpn )

pw pwu, + pa,

L € J \ (e+p)v,. J

where p, p, € and u, v, w are density, pressure, total energy,
and Cartesian velocity components, respectively, n = (n,, n,,
n.) 1s the unit normal of the surface, S, and v, = v-n. Pressure,
p. is related to the total energy, e, by the ideal gas law,

p—(v—l)(e—glvlz)- 3)

In a finite-volume approach the physical domain is further
divided into smail cells called control volumes. Let a semi-
discrete numerical scheme for a control volume AV in V be
written as

90 AV = —> F; dS,, (4)

where @ now represents the cell-averaged conservative vari-
ables and the summation index f denotes all surrounding faces
of AV. Scheme (4) is conservative in V if it satisfies

> 9y = F; dS,,

(5)
avey of fer
where I is the boundary of the physical domain V.
Now consider two general overlapping zones A and B shown
in Fig. 1b and assume conservative schemes are used in both
regions; then

> Leav=-3 Fas 6)
avea Ot -
L LUNTS S )
aven Of T,

Where I', and T’ are the boundaries of A and B. Let O be the
overlapping region between region A and B, ie, O =ANBAB
and let G be the global domain formed by A and B, ie, G =
A U B. Since only unique physical variables are possible in
region O, the following physical condition should be satisfied:

DL INN Q%AV. ®)

aveo Ot Aveo

A conservative scheme for the global domain G must satisfy

> @Av= §]) F, ds;. 9)
fErg

sveg OF

It is obvious that

I's = FA + T - FAG' — Tgo,
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where [ is part of the boundary of B which is overlapped by
A, and Ty, is defined similarly, From Egs. (6)-(9), the following
conservative condition is obtained:

E a_Q_AV=

aveg OF (10)

> Fpds;.

fETyoThe

Since Equations (6)—(9) are necessary and sufficient conditions
of conservation, (10) is also a necessary and sufficient condition
of conservation for the overlapping regions. If two regions are
patched together, then the necessary and sufficient condition
is the conservation of total flux along the common boundary,
ie.,

> F ds;=— >, F; ds;. (11)
r

fEFAO fE B0

3. A CONSERVATIVE INTERFACE ALGORITHM

The two conditions given in (8) and (10) are necessary and
sufficient conditions of conservation for general overlapped
zones. Its implementation is extremely difficult due to the
following reasons:

* two new internal boundaries (I, in B and Ty, in A) need
to be generated to enforce these conditions; and

* the simultanecus enforcement of both (8) and (10) is ex-
tremely difficult, if not impossible.

In fact, only condition (8) is enforced in 2D in [10]. Its exten-
sion to 3D invelves very complex volume integration and is
almost impossible to implement. Another condition of conser-
vation is given in [12]. Its implementation s unknown.

In this study, a new approach is developed. The basic idea
is very simple, i.e., to transform two overlapped zones into two
patched zones by taking advantage of one of the overlapping
boundaries, e.g., s in Fig. 2. 'z, becomes a paich boundary
{PB) between zone (A-() and B. The condition of conservation
is now flux conservation along the common patch boundary I,
(see Eq. (11)). One key step in this approach is the generation of
a new zonal interface within zone A. Key advantages of the
present approaches are:

T'so

4260 122

FIG. 2. Transformation of overlapped zones to patched zones.

'po

Major Grid A Minor Grid B

FIG.3. Schematic of conservative treatment of overlapped grid interface.

1. Conservative;
2. Unique solution in region ¢, and

3. Interpolations between zones unnecessary.

Details of the approach are given below.

3.1. Zonal Interface Generation (ZIG)

To enforce flux conservation, it is necessary to generate a
new internal boundary 'y, within zone A (major grid) to enforce
the conservation condition. Let us refer to Fig. 3. The represen-
tation of I'zp in 2D is joined line segments, e.g., 1-5, 5-9, etc.
These line segments intersect with cell faces of grid A. These
cell faces which are intersected by 1’5y are named cut faces
(CF), e.g., b-6, a-4. It is obvious that boundary segments of
grid B (minor grid) are further cut into even smaller segments
by CF. For example, segment 1-5 is cut into 1-2, 2-3, 34,
and 4-5. These smaller segments are named smallest faces
(SF). By conserving flux (mass, momentum, energy) on the SF
in the local sense, global conservation is guaranteed.

Three different types of cells are generated in grid A due to
the appearance of the new internal boundary I'y,:

Cut cells (CC). Cells in the major grid that are cut by 'y,
1.e., cells with “*+"’

Normal cells (NC).  Cells in the major grid that are outside
the region covered by the minoer grid, i.e., cells marked with *‘x*’

Hole cells (HC).  Cells in the major grid that are inside the
region covered by the minor grid, i.e., cells marked with **’.

It is observed that flow variables in NC can be updated straight-
forwardly using information from surrounding cells, while HC
are excluded from the computational domain. To updated flow
variables in CC, fluxes on SF and CF need to be available. In
addition, geometric quantities such as the area vectors of SF
and CF and the volume of CC need to be determined. ZIG
involves determining all the relevant area vectors and volumes.

3.2. Flux Calculation on the Patch Boundary

Since the patch boundary Iz, is composed of SF, fluxes on
each smallest face need to be calculated. Two separate steps
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are taken to obtain the fluxes: reconstruction and the Rie-
mann solver:

Reconstruction. Referring to Fig. 3, to calculate flux on the
smallest face, 6-7, cell-wise reconstructions are carried out at
cell h67¢ and cell 59gf to calculate the flow variables just to
the left and right of the face, Q* and Q%. Both cell-wise constant
and cell-wise linear reconstructions can be used. Cell-wise con-
stant reconstruction results in a first-order interface scheme
while cell-wise linear reconstruction gives a second-order inter-
face treatment. For a cell-wise constant reconstruction, Q" is
simply the flow variable at the cell center of b67¢ and QF is
the variable at the center of cell 59gf.

For cell-wise linear reconstruction, neighboring cells are used
to construct the gradients. Using the Taylor expansion with
respect to the cell center up to first order we obtain

_ dq dq
Gry = Groyo + a(x - xﬂ) + 5}: (y - y(l)s (12)

where g represents the primitive variables. For each neighboring
cell, we have one equation like (12). Then these equations are
solved in a least square sense to get the gradients (dq/dx, dgf
3v). Next the gradients are used to calculate (% and Q* based
on the position vector at the center of face 6-7.

Riemarn solver. Roe’s Riemann solver [13] is used to make
the interface scheme compatible with the interior discretization.
The flux is determined given the left and right state vectors,
as well as the face normal vector, i.e.,

F;= F(Qf, OF . n). (13)

3.3. Updating of Flow Variables

After the flux along the commeon patching boundary Ty, is
decided, it is straightforward to update the conservative vari-
ables in the minor grid B. For example, flux through face 1-5
can be summed from fluxes through 1-2, 2-3, 3—4, and 4-5.

The approach to update the conservative variables in cut cell
of grid A is described next. For any cut cell, the flux through
the boundary of the cell can generally be expressed as

Z Ff H 172.§ |+].'2J Fi*l.’2,_,i vVE—l;‘Z,j
fErCl'
(14)
+ Fi,_i+ll?.wl‘.j+ll2 - E,j—lflvvi.j—l.fl + EFSF;
where Fipj etc. are fluxes through the cut cell which are

calculated in the “‘normal’” way, W, etc. are area weights
for the corresponding cut cell, and Fg is the flux through the
SF within the cut cell. Some examples of the weights are given

Wignpe=1

Wiz j=dflad

Wizin=0

FIG. 4. Examples of weights for iregular polygonal control volumes,

in Fig. 4. With this treatment, the fluxes through all the cut
cells can be cast in the same form no matter what shapes they
happen to be in. After the fluxes are calculated, the conservative
variables of the cut cell can be updated directly.

4, FLOW SOLVER

The flow solver is based on a cell-centered finite volume
discretization. If Eq. (1) is integrated in a control volume, as
found in a structured grid, then

N
avi2 . > F=0,

1
> (15)

where N is number of faces surrounding AV. The inviscid flux
in Eq. (15) is calculated using the MUSCL reconstruction [14]
and Roe’s flux difference splitting [13]. The time integration
is fulfilled by a fully implicit scheme with a Jacobian solver.

4.1. Reconstruction

Consider reconstruction in the i direction. We utilize a linear
distribution (interpolation) of the solution (g = p, u, v, W, p},

g =gt s &, & n=E=Eon, (16)

where £ represent the arc length in the i-direction, s, is the slope
of the solution for cell i, If the slope is so defined that a
monotonic profile is preserved, the scheme will produce no
numerical oscillations. From Eq. (16) one may find the left
and right flow properties at interface [ + 1/2 to be

qfi+1.'2 givy ES1+|(§.+3F' — &in) (17)
ghin =g + 35:(Enn — E-1n)- (18)
The slope function can be expressed as
— i
r) (19}
Ly
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(g1 — gM& — &-1)
r= , , 20
(g — qg-1)&a— &) 20)
and ¢(r) is the so-called minmod limiter,
@lr) = mak(O, min(1, r)) (21

4.2. Riemann Solver

After the flow variables to the left and right of a face 0" and
OFf are known, Roe’s approximate Riemann solver is used to
compute the numerical flux. The flux of face f takes the same
form as (13).

4.3. Time Integration

After spatial discretization, the equation to be integrated in
time is (15). In the present study, primitive variables ¢ =
(p, 1, v, w, p)! are updated. Equation (15) can be rewritten as

avmde— ->F, (22)
ar =
where

r1 0 0 0 0

u g 0 O 0

v 0 0 0
m=22_ P g

dq w 0O 0 p 0

ol ou oo ——

L2 : v—1)

If implicit backward Euler method is used for time discretization
in {22), then

n+1 _q
mi — 4 Av+2F"+' 0

N 23)

or

ntl .
mi —%& q‘ Av+2( Fyt—Fpy= (24)

—2 .
7
Linearizing F§™' with respect to F} up to second order, we obtain

aFy
aq.

aF,
Fn+l Fi+ a—q‘.rAq,- + Aq,, (25)

where g, is the primitive variable vector of the neighboring
cell of i. Substituting Eq. (25) into Eq. (24), then

FIG. 5. The cell stencil for fully implicit scheme.

Ag, +
fa%) q z

(26)

—2 F}.
f

The stencil of the cells which are used to construct a fully
implicit scheme at cell i is depicted in Fig. 5. This equation is
then solved using a point Jacobian iterative solver, i.e.,

oF, i
( M+2 f)A9+‘=—§f:F}’—§f:a @7

F
LAge,
q

n

where 8 represents an inner iteration number. The convergence
of this inner iteration is controlled by the conditions,
|Aq | -

Al <o (28)

0+ 1<0,,, (29)
where ¢ is a small positive tolerance number and &, is a
prescribed maximum inner iteration number.

5. NUMERICAL RESULTS

The conservative interface algorithm described in previous
sections was implemented in a finite volume code, CFD-
FASTRAN [15], which uses the algorithm described in the
previous section. The criterion of freestream conserving was
used to debug the code and has proved invaluable. To conserve
a freestream, the area vectors of SF, CF need to be calculated
correctly. The criterion was satisfied for every case performed
in this study.

The main purpose of the test cases is to demonstrate the
capability of the developed conservative interface scheme and
to show the advantages it has over the nonconservative coun-
terpart,

We have concentrated on the following aspects, which we
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FIG. 6. Computational meshes used in transonic channel flow with 10%
bump.

believe a conservative scheme will distinguish itself from a
nonconservative one:

a. correct strength and position of discontinuities;

b. et mflow or outflow mass must be zero for steady state
calculations; and

C. convergence properties.

One may argue that the errors in conservative quantities are
of the same order as the truncation error even if the scheme is
nonconservative. This statement is true in theory. However, in
regions near a discontinuity, derivatives of flow variables are
infinite. The truncation error may be of second-order in theory
at those regions, but it can be larger in magnitude than, say, a
first-order error term in a smooth region. The large conservative
error near the discontinuities can potentially result in shock

101

-2.0 T T T T T
Benchmark
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o Non-Conservative| 2
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o
Qe
0.0 )
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X

FIG. 8. Comparisons of Cp profiles on the lower walt of the channel.

waves with incorrect jump conditions or wrong locations even
if the numerical scheme itself is of high-order in accuracy.
To compare the conservative Chimera (COC) with the origi-
nal Chimera (ORC), a cell-centered finite volume code, CFL3D,
from NASA Langley Research Center was used in this study
besides CFD-FASTRAN. The ORC was implemented into
CFL3D by Langley researchers. The reason for using CFL3D
is that it is based on the same discretization schemes, such
as cell-centered finite volume, MUSCL reconstruction with
minmod limiter, and Roe’s approximate Riemann solver, The
difference between CFL3D and CFD-FASTRAN is in the time
integration scheme. CFL3D employs a diagonized implicit op-
erator, while CFD-FASTRAN uses a fully implicit scheme with
a Jacobian solver. The difference in time integrations should
disappear at steady state, which is affected only by the right-

b
g7 N

A

NI

FIG, 7. Computed Mach and pressure contours for transonic chamnel flow,
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TABLEY e ,;:5::{.
Mass Flow Imbalance i ‘
A LAY AEETER TR (N
AAAVVAARRA ARV A R R by
Inftow mass rate Qutflow mass rate  Imbalance A A A AT L LV EA
LT RN N N W]
1 |\\|n|n\".11||n[':u||
i
CFD-FASTRAN 269.52534 269.52535 4% 107% TH T T
j [[=d rw = ma s
single zone IE; f/',;/////;g/
_ - e
CFD-FASTRAN 269.47414 269.47412 6 x 107°% A : : il s
overlapped L L Lo bk BT BT AT e
CFL3D 269. } . 5 554
8248 270.8508 0.38% /;ﬁuuﬁfu% L T T LA
overlapped [T T T T T I I T eyt r-u‘.‘ﬁfTiU
a

o N

A

N

2

F1G. 9. Comparison of (a) zeroth-order and {b) first-order reconstruction

at the patch boundary.

Log(Resldual)

Conservative Chimera
-~~~ Original Chimera k

1 L L

500 1000 1500 2000 2500 3000
lterations

FIG. 10. Residual histories for ransonic channel flow.

FIG. 11. Two-zone overlapped computational mesh used in moving
shock probiem.

hand side. Four 2D steady and unsteady cases will be presented
in this section.

5.1. Transonic Flow through a Channel with 10% Bump

This case has been widely used to test compressible flow
solvers in capturing shock waves. The width of the channel is
equal to the length of the bump and the channel length is equal
to three lengths of the bump. For the inlet Mach number of
M,, = 0.675, a shock wave is generated over the bump. A two-
zonal overlapped grid as shown in Fig. 6a was used in the
simulations. The solution on a fine single-zonal grid, shown

FIG. 12, The initial shock position at ¢ = 0.
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FIG. 13. Density contours for moving shock problem at ¢ = 1 and 7 = 2,

FIG. 14.  Three zone Chimera grid for multielement airfoil Aow.
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FIG. 15. Simulated Mach and pressure for multielement airfoil flow.

in Fig. 6b, was used for comparison purposes. The two-zone
Chimera grid was also used in simulation with CFL3D. Com-
puted Mach and pressure contours are displayed in Fig. 7.
Generally speaking, the contours calculated with the Chimera
grids agree fairly well with the single-zone simulations. The
same conclusions can be drawn with respect to the C, distribu-
tions along the lower channel wall, which are shown in Fig.
8. However, there are large differences between these simula-
tions in net mass imbalance, which is shown in Table 1.

It can be observed that a machine-zero mass imbalance was
achieved using COC in CFD-FASTRAN. The mass imbalance
obtained with ORC in CFL3D was about five orders larger than
that with CFD-FASTRAN. This clearly demonstrates the fully
conservative nature of the COC.

A cell-wise constant reconstruction near the patch boundary
was implemented to compare with a cell-wise linear reconstrue-
tion, Figure S shows the effects of the first-order and second-
order zonal interface schemes. It is apparent that the second-
order scheme delivers smoother variable transitions between

—— Computation
© Experiment

2.0

0.00 0.25 0.50

FIG. 16. Comparison of Cp profiles between computation and experiment.
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1.0 T T T T T
—— Airfoll Grid
0.0 - Slat Girid

---- Flap Grd

Log(rasidual)

_8 0 L e e, ] —
"o 500 1000 1500 2000 2500 3000
lterations
FIG. 17. Convergence histories for multielement airfoil flow.

the overlapped zones. Convergence histories of simulations
with Chimera grids are displayed in Fig. 10. COC has no
problem in converging to machine zero, while ORC stalled in
convergence after several orders. The nonconservative interface
treatment may have contributed to this convergence stall.

5.2. Slow Moving Shock Problem ’

Another classical test case for conservative and nonconserva-
tive schemes is the slow moving shock problem. It was demon-

FIG. 18. Configuration and computational grids for shock diffraction by
a cylinder.
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b

FIG. 19. Density contours at different times with Chimera grid.

strated by Part-Enander and Sjogreen {16] that a conservative
interface scheme allowed a moving shock to pass through. an
overlapped mterface, while a nonconservative scheme failed.
The same problem was used in this study to see if COC performs
any better than ORC. The pre- (left) and post-shock (right)
fiow conditions are: py = 1.4, p, = 1, u, = 3; p, = 5.33064,
p, = 10.2286, and u, = 0.791673. These conditions result in
a shock moving from left to right in speed v, = 0.015. A two-
zone computational mesh, shown in Fig. 11 was used. At 1 =
0. the position of the shock is displayed in Fig. 12. At =1,
2, the density contours obtained by ORC and COC are shown
in Fig. 13. It can be seen that some instabilities developed in
the ORC calculation and caunsed the shock wave to dissipate
and eventually disappear. The COC had no difficulty in resolv-
ing the moving shock wave and allowed the shock to pass
through the interface.

5.3. Three-Element Airfoil Flow

The case of subsonic flow about a three-element airfoil was
investigated experimentally by Valarezo et al. [17]. The flow
conditions are: M, = 0.2, o = 0.2°, Re = 9 X 10% In the
present study, the inviscid flow assumption was made. The
airfoil is composed of a slat, a main airfoil, and a trailing flap.
It is an ideal case to demonstrate the geometric flexibility of
Chimera. The three-zone overlapped grid is shown in Fig. 14,
The mesh sizes are 85 X 7 for the slat, 209 X 79 for the main
airfoil, and 136 X 9 for the flap. The outer boundary is placed
10 chord lengths away from the airfoil. The calculated pressure
and Mach number contours are displayed in Fig. 15. The Cp
distributions are compared with experimental data in Fig. 16.
The agreement is generally fairly good, considering no viscous
effects were included. The convergence history is shown in
Fig. 17. Convergence stalled for the main airfoil after 1500
tterations. Careful examination of the flow field revealed that

the flow near the leading edge of the main airfoil tended to
separate and caused some limit-cycle-like oscillations. This
may be due to negligence of viscous effects, since the flow
was physically turbulent.

5.4. Shock Diffraction by a Cylinder

This unsteady test case is selected to test the Chimera algo-
rithm in handling problems with sirong nonlinear wave interac-
tions. The definition of the problern and the computational mesh
are shown tn Fig. 18. An experimental shadowgraph is available
to compare with numerical resuits. The density contours at
various instants are displayed in Fig. 19. It is noticed that shock
waves and slip lines can freely pass through and propagate
along the overlapped zonal interface. Figure 20 compares the
density contours of the present simvlations with one shadow-
graph picture from the experiment. There is very good
agreement between numerical simulations and the experiment
in overall features of the flow field—-the shock waves, the slip
lines, etc.

6. CONCLUSIONS

A fully conservative interface algorithm for overlapped Chi-
mera grids has been developed. The algorithm was successfully
implemented into a cell-centered finite volume code. In 2D,
zonal interface generation (Z1G) takes about the same order of
cpu time as one step of the flow solver. In 3D, ZIG is expected
to be much more time-consuming. However, ZIG is carried out
only once for nonmoving grids so the cost is negligible. At
each iteration, fluxes need to be calculated on all smailest faces,
This is the only overhead associated with the algorithm. This
overhead is very small {<{53% of total cpu) in comparison with
the Row solver.



FIG. 20. Comparison of experiment shadowgraph with computational den-
sity contours.

Comparisons with the original (nonconservative) Chimera
were carried out. Based on the study, the following conclusions
can be made:

a. The present interface scheme for Chimera grids has been
mathematically shown and nurnerically verified to be conserva-
tive. Zero mass imbalance was achieved up to machine accuracy
for steady flows. Captured shock waves with the interface
scheme showed excellent agreement with conservative single-
zone simulations.

b. Implementation of the developed interface scheme in a
cell-centered finite volume code is straightforward. The inter-
face treatment is fully compatible with the interior numerical
discretization assuming the reconstruction accuracy near the
interface is of the same order as that of the interior reconstruc-
tion. Therefore, loss in accuracy due to grid overlapping is mini-
mized.

Z. J. WANG

¢. Comparisons between the conservative Chimera and the
original Chimera (i.e., CFD-FASTRAN vs. CFL3D) were car-
ried out side by side. Mass imbalance, shock capturing ability,
and convergence properties were examined. The conservative
Chimera has consistently performed better than or at least equal
to its nonconservative counterpart. It was also shown that the
nonconservative Chimera can capture a strong steady shock
wave probably because it is zonally conservative.
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